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 38 
SUMMARY 39 
Multiple sclerosis (MS) is a modern neuro-inflammatory and -degenerative disease, which is most 40 
prevalent in Northern Europe. Whilst it is known that inherited risk to MS is located within or within 41 
close proximity to immune genes it is unknown when, where and how this genetic risk originated. By 42 
using the largest ancient genome dataset from the Stone Age, along with new Medieval and post-43 
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Medieval genomes, we show that many of the genetic risk variants for MS rose to higher frequency 44 
among pastoralists located on the Pontic Steppe, and were brought into Europe by the Yamnaya-45 
related migration approximately 5,000 years ago. We further show that these MS-associated 46 
immunogenetic variants underwent positive selection both within the Steppe population, and later in 47 
Europe, likely driven by pathogenic challenges coinciding with dietary and lifestyle environmental 48 
changes. This study highlights the critical importance of this period as a determinant of modern 49 
immune responses and its subsequent impact on the risk of developing MS in a changing 50 
environment.  51 
 52 
INTRODUCTION 53 
Multiple sclerosis (MS) is an autoimmune disease of the brain and spinal cord that currently affects 54 
more than 2.5 million people worldwide. The prevalence varies markedly with ethnicity and 55 
geographical location, with the highest prevalence observed in Europe (142.81 per 100.000 people), 56 
and Northern Europeans being particularly susceptible to developing the disease1. The origins and 57 
reasons for the geographical variation are poorly understood, yet such biases may hold important 58 
clues as to why the prevalence of autoimmune diseases, including MS, has continued to rise during 59 
the last 50 years.  60 
 61 
While still elusive, MS etiology is thought to involve gene-gene and gene-environmental interactions. 62 
Accumulating evidence suggests that exogenous triggers initiate a cascade of events involving a 63 
multitude of cells and immune pathways in genetically vulnerable individuals, which may ultimately 64 
lead to MS neuropathology2. 65 
 66 
Genome-wide association studies have identified 233 commonly occurring genetic variants that are 67 
associated with MS; 32 variants are located in the HLA region and 201 outside the HLA region3. The 68 
strongest MS associations are found in the HLA region with the most prominent of these, HLA-69 
DRB1*15:01, conferring an approximately three-fold increase in the risk of MS. Collectively, genetic 70 
factors are estimated to explain approximately 30% of the overall disease risk, while environmental 71 
and lifestyle factors are considered the major contributors to MS. Such determinants may include 72 
geographically varying exposures like infections and low sun exposure/vitamin D deficiency. For 73 
instance, while infection with Epstein-Barr virus frequently occurs in childhood and usually is 74 
symptomless, delayed infection into early adulthood, as typically observed in countries with high 75 
standards of hygiene, is associated with a 32-fold increased risk of MS4,5. Lifestyle factors associated 76 
with increased MS risk such as smoking, obesity during adolescence, and nutrition/gut health also 77 
vary geographically6. Dysregulations including autoimmunity in modern immune systems could also 78 
result from the absence of ancient immunological triggers to which humans have evolutionarily 79 
adapted, for instance by disturbing the delicate balance of pro- and anti-inflammatory pathways7.  80 
 81 
European ancestry has been postulated to explain part of the global difference in MS prevalence 82 
globally in admixed populations8. Specifically, cases in African Americans exhibit increased 83 
European ancestry in the HLA region compared to controls, with European haplotypes conferring 84 
more MS risk for most HLA alleles, including HLA-DRB1*15:01. Conversely, Asian American cases 85 
have decreased European ancestry in the HLA region compared to controls. Although Ancient 86 
European ancestry and MS risk in Europe are known to be geographically structured (Figure 1a-b), 87 
the effect of ancestry variation within Europe on MS prevalence is unknown.  88 
 89 
Modern ancestry is viewed as a mixture of genetic ancestries derived from ancient populations, who 90 
can be distinguished by their subsistence lifestyle: Western Hunter-Gatherers (WHG), Eastern 91 
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Hunter-Gatherers (EHG), Caucasus Hunter-Gatherers (CHG), Anatolian Farmers, and Steppe 92 
Pastoralists (Figure 1c-d). Using the largest ancient genome dataset from the Stone Age, presented in 93 
the accompanying study ‘Population Genomics of Stone Age Eurasia’9, coupled with new Medieval 94 
and post-Medieval genomes, we quantified modern European ancestry with respect to these ancient 95 
ancestries to identify signals of lifestyle-specific evolution. Then we determined whether the variants 96 
associated with an increased risk for MS have undergone positive selection. We asked when selection 97 
occurred and whether the targets of selection were specific to diet and lifestyle. Finally, we examined 98 
the environmental conditions that may have caused selection for risk variants, including human 99 
subsistence practice and exposure to pathogens.  100 
 101 
 102 

103 
 104 

 105 
Figure 1: Population history of Europe is associated with modern-day distribution of MS. 106 
a) Modern-day geographical distribution of MS in Europe. Prevalence data for MS (cases per 107 
100,000) was obtained from 1. b) Steppe ancestry in modern samples as estimated by 10. c-d) A model 108 
of European prehistory11 onto which our reference samples have been projected using NNLS (see 109 
Methods), and the same data represented spatially. Chronologically, Western Hunter-Gatherers 110 
(WHG) and Eastern Hunter-Gatherers (EHG) were largely replaced by Anatolian Farmers amid 111 
demographic changes during the “Neolithic transition” around 9,000 years ago. Later migrations 112 
during the Bronze Age about 5,000 years ago brought a roughly equal Steppe ancestry component 113 
from the Pontic-Caspian Steppe to Europe, an ancestry descended from the EHG from the Middle 114 
Don River region and Caucasus Hunter-Gatherers (CHG)9. Steppe ancestry has been associated with 115 
the Yamnaya culture and then with the expansion westwards of the Corded Ware Complex and Bell 116 
Beaker culture, and the eastwards expansion in the form of the Afanasievo culture12,10. Samples are 117 
vertical bars representing their “admixture estimate” estimated by NNLS (methods) from six 118 
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ancestries: EHG (green), WHG (pink), CHG (yellow), Farmer (blue), Steppe (cyan) or an Outgroup 119 
(represented by ancient Africans, red). Important population expansions are shown as growing bars 120 
and “recent” (post-Bronze age) non-reference admixed populations are shown for the Denmark time-121 
transect (see Supplementary Figure 1.1 for details). 122 
 123 
RESULTS 124 
We obtained local ancestry (i.e. ancestry at specific loci) labels for ~410,000 self-identified “white 125 
British” individuals in the UK Biobank13, using a reference panel of 318 ancient DNA (aDNA) 126 
samples9 (Figure 1; Supplementary Figure 1.1) from the Mesolithic and Neolithic, including Steppe 127 
pastoralists. Comparing the ancestry at each labelled single nucleotide polymorphism (SNP, 128 
n=549,323) to genome-wide ancestry in the UK Biobank provided a “local ancestry anomaly score” 129 
(Methods), for which two regions stood out as having undergone the most significant ancestry-130 
specific evolution in this period: LCT/MCM6, regulating lactase persistence14, and the HLA region 131 
(Figure 2, top).  132 
 133 
To determine whether this evolution of the HLA region has subsequently impacted diseases that are 134 
strongly associated with risk alleles found within this region, we investigated the history of variants 135 
associated with two HLA-associated autoimmune diseases, multiple sclerosis (MS) and rheumatoid 136 
arthritis (RA), using the largest ancient genome dataset from the Stone Age coupled with 86 new 137 
Medieval and post-Medieval genomes from Denmark (Supplementary Figure 1.1, Supplementary 138 
Note 1, ST1). Alongside modern data, with our newly published genomes we have an almost 139 
complete transect from approximately 10,000 years ago to the present.  140 
 141 
The allele frequencies of SNPs conferring the highest risk for MS (all in the HLA class II region) in 142 
our ancient groups show striking patterns. In particular the tag SNP (rs3135388-T) for HLA-143 
DRB1*15:01, the largest risk factor for MS, first appeared in an Italian Neolithic individual (sampleId 144 
R3 from Grotta Continenza, C14 dated to between 5,836-5,723 BCE, coverage 4.05X) and rapidly 145 
increased in frequency around the time of the emergence of the Yamnaya culture around 5,300 years 146 
ago in Steppe and Steppe-derived populations (Figure 2). From risk allele frequencies of individuals 147 
in the UK Biobank born in, and of a ‘typical ancestral background’ for, each country9, we found 148 
HLA-DRB1*15:01 frequency peaks in modern populations of Finland, Sweden and Iceland, and in 149 
ancient populations with high Steppe ancestry (Figure 2, inset). 150 
 151 
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 152 
Figure 2. Areas of unusual local ancestry in the genome, and ancient and modern frequencies of 153 
DRB1*15:01. 154 
a): Local Ancestry Anomaly Score measuring the difference between the local ancestry and the 155 
genome-wide average (capped at -log10(p)=20; see Methods). b) HLA-DRB1*15:01 frequencies in 156 
ancient and modern (inset) populations; this is the highest effect variant for MS risk (calculated using 157 
rs3135388 tag SNP). For the ancient data, for each ancestry (CHG, EHG, WHG, Farmer, Steppe) the 158 
five populations with the highest amount of that ancestry are coloured and labelled. DRB1*15:01 was 159 
present before the Steppe expansion, but rose to high frequency during the Yamnaya formation 160 
(shaded red). The geographical distribution of DRB1*15:01 frequency in modern populations in the 161 
UK Biobank is also shown (inset). 162 
 163 
To investigate the risk of a particular ancestry at all MS-associated fine-mapped loci3 present in the 164 
UK Biobank imputed dataset (n=205/233, see methods), we used the local ancestry dataset to 165 
calculate a risk ratio (see Methods: Weighted Average Prevalence) for each ancestry. For MS, Steppe 166 
ancestry has the highest risk ratio in nearly all HLA SNPs, while Farmer and ‘Outgroup’ ancestry 167 
(represented by ancient Africans) are often the most protective (Figure 3, top), meaning a Steppe-168 
derived haplotype at these positions confers MS risk.  169 
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 170 

 171 
 172 
Figure 3: Associations between local ancestry and MS in a modern population. 173 
a) Risk ratio of SNPs for MS based on weighted average prevalence (WAP; see Methods), when 174 
decomposed by inferred ancestry. Each ancestry is assigned a mean and confidence interval based on 175 
bootstrap resampling, for each chromosome (faded where non-significant). The three HLA regions 176 
are split from the rest of chromosome 6, and SNPs with risk ratio >1.2 or <0.8 are annotated. b-c) 177 
Genome-wide Ancestral Risk Scores (ARS, see Methods) for MS. Confidence intervals are estimated 178 
by either bootstrapping over individuals (b, which can be interpreted as testing power to reject a null 179 
of no association between MS and ancestry) and bootstrapping over SNPs (c, which can be 180 
interpreted as testing whether ancestry is associated with MS genome-wide). 181 
 182 
Having shown that some ancestries carry higher risk, we calculated an aggregate risk for each 183 
ancestry across the same SNPs using a new statistic, the Ancestral Risk Score (ARS). ARS is 184 
computed in a large modern sample with local ancestry labels, estimating the relative risk for a 185 
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modern individual consisting of entirely one ancestry, mitigating the effects of low aDNA sample 186 
numbers and bias15, and being robust to intervening drift and selection. We used effect size estimates 187 
from previous association studies, under an additive model, with confidence intervals obtained via an 188 
accelerated bootstrap16 (Supplementary Note 4). In the ARS for MS (Figure 3 bottom), Steppe 189 
ancestry had a large and significant risk, followed by WHG, CHG and EHG; Neolithic Farmer and 190 
Outgroup ancestry had the lowest ARS (Figure 3). Therefore Steppe ancestry is contributing the most 191 
risk for MS overall. We tested for a genome-wide association by resampling loci, and found that 192 
Steppe risk is much reduced but still clearly exceeds Farmer, a pattern which holds even when 193 
excluding SNPs on the HLA (Supplementary Note 4, Figure S4.1). 194 
 195 
The fact that all but two MS-associated HLA SNPs confer risk within Steppe ancestry implies that 196 
this risk has a common evolutionary history. We therefore investigated whether ancestry was 197 
important for prediction using three types of association study in the UK Biobank for disease-198 
associated SNPs, controlling for age, sex and the first 18 PCs. The first of these is a regular SNP-199 
based association as conducted in GWAS. The second uses local ancestry probabilities instead of 200 
genotype values (Supplementary Note 3). The third is based on Haplotype trend regression (HTR) 201 
which is used to detect interactions between SNPs17 by treating each haplotype’s probability as a 202 
feature from which to predict a trait, instead of using SNPs as in a regular GWAS. We developed a 203 
new method called Haplotype Trend Regression with eXtra flexibility (HTRX, Supplementary Note 204 
5) that searches for haplotype patterns that include single SNPs and non-contiguous haplotypes. To 205 
prevent overfitting, we reported out-of-sample variation explained, and showed by simulation (see 206 
Supplementary Figure 4.4) that HTRX predicts the same variance as regular GWAS when interactions 207 
are absent, but explains more variance when the interaction strength increases.  208 
 209 
Although our cohort of self-identified “white British” individuals is relatively under-powered with 210 
respect to MS (cases=1,949; controls=398,049; prevalence=0.487%), MS was associated with Steppe 211 
and Farmer ancestry (p<1e-10) in the HLA region (Supplementary Figure 4.1). In 3 out of 4 main LD 212 
blocks within the HLA (class I, two subregions of class II determined by LD blocks at 32.41-32.68Mb 213 
and 33.04-33.08Mb, and class III), local ancestry explains significantly more variation in total than 214 
SNP variation (Figure 4; measured by average out-of-sample McFadden’s ܴଶ for logistic regression, 215 
see Methods). While increased ancestry performance over GWAS can be explained by tagging of 216 
SNPs outside the region, increased HTRX performance over GWAS quantifies the total effect of a 217 
haplotype, including rare SNPs and epistasis. Across the entire HLA region, haplotypes explain at 218 
least 17% more out-of-sample variation than GWAS (2.90%, compared to 2.48%). Interaction signals 219 
are also observed within class I, within class II, and between class I and III.  220 
 221 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2022. ; https://doi.org/10.1101/2022.09.23.509097doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.23.509097
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 222 
Figure 4: MS association in the HLA.  223 
Comparison of variance explained in MS within the UK Biobank, for all fine-mapped HLA SNPs with 224 
an independent contribution3. The plots compare GWAS (treating SNPs as having independent effect), 225 
local ancestry at those SNPs, and HTRX (haplotypes) after accounting for covariates (Methods). a) is 226 
for fine-mapped MS-associated SNPs in the HLA. b) is HLA class I and -III, c) is HLA class II, d) is 227 
HLA class I, e) is HLA class III, f) and g) are subregions of HLA class II chosen from LD. HTRX has 228 
small “up-arrows” where these are lower bounds (Methods). h) Genetic correlations in the HLA 229 
region at our time-depth from Ancestry-based LD (LDA, see Methods) and Supplementary Figure 6.5 230 
for LD. 231 
 232 
This interaction risk can be attributed to particular ancestries: for example, multiple haplotypes at the 233 
32.41-32.68Mb region are Steppe-associated and have high MS odds ratios. We further tested whether 234 
co-occurring ancestries at each loci were associated with MS (Methods; Supplementary Figure 4.2), 235 
but found no evidence that risk was associated with anything other than Steppe ancestry. 236 
 237 
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Having established that Steppe ancestry contributes most of the HLA-associated risk for MS, we 238 
investigated evidence for polygenic selection on the disease-associated variants using two methods. 239 
Firstly, we used a novel chromosome painting technique based on inference of a sample’s nearest 240 
neighbours in the marginal trees of an ARG that contains labelled individuals (Irving-Pease et al., 241 
submitted). The resulting ancestral path labels, for haplotypes in both ancient and modern individuals, 242 
allowed us to infer allele frequency trajectories for risk associated variants, while controlling for 243 
changes in admixture proportions through time. These paths extend backwards from the present day to 244 
approximately 15,000 years ago, and are labelled with the unique population that a path travels 245 
through. We stress that the path labels are not representative of a continuous population, but represent 246 
a path backwards in time that encompasses that ancestry. For example, the CHG path originates in 247 
Caucasus hunter-gatherers, before merging with EHG to form the Steppe population, and then merges 248 
with other ancestries in later European populations (Figure 1).  249 
 250 
Because not all fine-mapped SNPs had ancestral path labels (missing OR=10.4%) and due to the 251 
difficulty in accurately inferring HLA alleles in ancient samples18, we LD-pruned genome-wide 252 
significant summary statistics from the same study3 for which we did have ancestry path labels (n=62, 253 
see methods). This allowed us to test for polygenic selection across disease-associated variants using 254 
CLUES19 and PALM20. 255 
 256 
For MS, we found evidence that disease risk was selectively increased when considering all ancestries 257 
collectively (p=5.06e-05; ω=0.0029), between 5,000-2,000 years ago (Figure 5). Conditioning on each 258 
of the four long-term ancestral paths (CHG, EHG, WHG and ANA), we found a statistically 259 
significant signal of selection in CHG (p=6.45e-3; ω=0.009). None of the other ancestral paths 260 
reached nominal significance, although ANA (p=0.0743; ω=0.011) and EHG (p=0.064; ω=0.0045) 261 
paths were close. Again, it is likely that the selection occurred in the pastoralist population of the 262 
Steppe, as that population consists of approximately half CHG ancestry11 (Figure 1). The SNP driving 263 
the largest change in genetic risk over time was rs3129934, in both the pan-ancestry (p=9.52e-06; 264 
s=0.017) and CHG (p=0.019; s=0.008) analyses, which tags the HLA-DRB1*15:01 haplotype21. We 265 
also tested three other alleles that tag the HLA-DRB1*15:01 haplotype (rs3129889, rs3135388 and 266 
rs3135391) for evidence of selection, and found that the ancestry stratified signal was consistently 267 
strongest in CHG (Figure 5). None of the four tag SNPs were detected on either the EHG or WHG 268 
backgrounds, indicating that the HLA-DRB1*15:01 haplotype likely originated in the basal 269 
population ancestral to both ANA and CHG. 270 
 271 
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 272 
Figure 5: Evidence for selection on MS-associated SNPs. 273 
a) Stacked line plot of the pan-ancestry PALM analysis for MS, showing the contribution of alleles to 274 
disease risk over time. Individual SNPs are stacked, with their trajectories polarised to show the 275 
frequency of the positive risk allele and weighted by their scaled effect size: when a given SNP bar 276 
becomes wider over time the risk allele has increased in frequency, and vice versa. SNPs are sorted 277 
by their marginal p-value and direction of effect, with selected SNPs that increase risk plotted on top. 278 
SNPs are also coloured by their marginal p-values, and significant SNPs are shown in yellow. The y-279 
axis shows the scaled polygenic risk score (PRS), which ranges from 0 to 1, representing the 280 
maximum possible additive genetic risk in a population. 281 
b) Maximum likelihood trajectories for four SNPs tagging DRB1*15:01. The background is shaded 282 
for the approximate time period in which the ancestry existed as an actual population. None of the 283 
tagging alleles are present on the EHG or WHG ancestral paths.  284 
 285 
Our second selection measure introduces a new statistic, Linkage Disequilibrium of Ancestry (LDA). 286 
LDA is the correlation between ancestries across SNPs, measuring whether recombination events 287 
between ancestries are high compared to recombination within ancestries. From this we constructed 288 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2022. ; https://doi.org/10.1101/2022.09.23.509097doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.23.509097
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

an “LDA score” using the fine-mapped SNPs, which is the total amount of genome in LDA with a 289 
given SNP. A high LDA score indicates that the haplotype inherited from the reference population is 290 
longer than expected, while a low score indicates that the haplotype is shorter than expected (i.e. 291 
underwent more recombination). For example, the LCT/MCM6 region exhibits a high LDA score 292 
(Supplementary Figure 6.4), as expected from a relatively recent selective sweep22. 293 
 294 
The HLA has significantly lower LDA scores than the rest of chromosome 6 (Supplementary Figure 295 
6.4). We simulated the LDA score under selection (Supplementary Figure 6.1; Methods), which 296 
showed that when SNP frequencies are increasing in the most recent population, single locus selection 297 
cannot explain this signal (Supplementary Figure 6.2-3). Instead, different loci in LD must have 298 
independently reached high frequency in different ancestral populations that admixed, with selection 299 
favouring haplotypes of mixed ancestry over single-ancestry haplotypes. Although multi-SNP 300 
selection has been modelled23, the interaction with prior population structure is less explored and is 301 
important for the HLA, justifying a new term, "recombinant favouring selection".  302 
 303 
The HLA region contains the highest “Outgroup” ancestry anywhere on the genome (Figure 6), 304 
reflecting high nucleotide diversity. Unlike other measures of balancing selection such as Fst (Figure 305 
6), LDA describes excess ancestry LD from specific, dated populations and therefore need not be 306 
correlated with them. For the HLA class II region, the selection measures all line up (LDA score, Fst, 307 
pi), but for class I, the LDA score has an additional non-diverse minimum at 30.8Mb, implying that 308 
here the genome is ancestrally diverse but genetically strongly constrained. The LDA score is thus 309 
informative about the type of selection being detected, and whether it has been subject to change. 310 
 311 
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 312 
Figure 6: Signatures of selection at the HLA locus showing different regions of the HLA 313 
(coloured bar) and locations of MS-associated SNPs (vertical lines, coloured by the variance 314 
explained by 6 ancestries). a): Whole Chromosome 6 “local ancestry” decomposition by genetic 315 
position. b). HLA “local ancestry” decomposition. c): LDA score; low values are indicative of 316 
selection for multiple linked loci, while high values indicate positive selection. d): pi scores 317 
(nucleotide diversity) for CEU (Northern and Western European ancestry). MS-associated SNPs fall 318 
in highly diverse regions of the HLA. e): Fst scores (divergence between two populations) for CEU vs 319 
YRI(Yoruba); locally higher scores indicate regions that have undergone differential selection 320 
between the two populations.  321 
 322 
Because MS would not have conferred a fitness advantage on ancient individuals, it is likely that this 323 
selection was driven by traits with shared genetic architecture, of which increased risk for MS in the 324 
present is a consequence. We therefore looked at LD-pruned MS-associated SNPs that showed 325 
statistically significant evidence for selection using CLUES (n=26) and which also had a genome-326 
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wide significant trait association (p < 5e-8) in any of the 4,359 traits from the UK Biobank13 (UK 327 
Biobank Neale Lab, Round 2: http://www.nealelab.is/uk-biobank/). We found that many selected 328 
SNPs are also associated with celiac disease (n=15), white blood cell/neutrophil count (n=15/n=15), 329 
hypothyroidism (n=14) and haemoglobin concentration (n=14) (Supplementary Figure 7.1). This 330 
raised the possibility that the selection had increased risk for both MS and celiac disease, and when 331 
we tested celiac disease for polygenic selection, we found significant evidence for positive selection, 332 
increasing genetic risk (p=9.65e-3; ω=0.846, Supplementary Note 6). 333 
 334 
Because the UK Biobank is underpowered with respect to many traits and diseases, we also undertook 335 
a manual literature search (see methods) for all SNPs that reached genome-wide significance for 336 
association with MS in the summary stats (i.e., not LD-pruned, as independence is not required) and 337 
which showed statistically significant evidence for selection using CLUES (n=94). We found that 338 
most of the alleles under positive selection are associated with protective effects against specific 339 
pathogens (virus, bacteria, fungi and parasites) and/or infectious diseases within one or several 340 
ancestral paths (disease or pathogen associated/total selected in ancestry path: pan-ancestry 36/44; 341 
ANA 24/31; CHG 25/29; EHG 27/35; WHG 9/10, Supplementary Note 8, ST13, Supplementary 342 
Figure 8.1), although we note that GWAS data for many infectious diseases are not available. We 343 
observed that the selected alleles had protective associations with several chronic viruses (EBV, VZV, 344 
HSV, and CMV) and to viruses or diseases not associated with transmission in small hunter-gatherer 345 
groups (e.g., measles, mumps, influenza, whooping cough). Moreover, many selected alleles 346 
conferred a reduction of risk of parasites, of skin and subcutaneous tissue, gastrointestinal, respiratory, 347 
urinary tract, and sexually transmitted infections, or of pathogens associated with these or other 348 
infections (e.g., malaria, toxoplasmosis, entamoeba histolytica, clostridium difficile, tuberculosis, 349 
streptococcus pyrogenes, and chlamydia) (Supplementary Note 8, ST13, Supplementary Figure 8.1). 350 
 351 
We contrasted these findings for MS with results for RA, a common inflammatory HLA class II-352 
associated disease that primarily affects the joints causing pain, swelling and stiffness24, which shows 353 
a strikingly different ancestry risk profile. HLA-DRB1*04:01 is the largest genetic risk factor for RA; 354 
in the CLUES analysis, the tag SNP for this allele (rs660895) displayed evidence of continuous 355 
negative selection until approximately 3,000 years ago (p=4.63e-4, Supplementary Figure 5.1). We 356 
found that WHG and EHG ancestries often confer the most risk at SNPs associated with RA (Relative 357 
Risk ratio of RA-associated SNPs based on WAP, see Methods); and these ancestries have 358 
contributed the greatest risk for RA on aggregate, reflected in a higher ARS for these ancestries 359 
(Supplementary Note 4), while Steppe and Outgroup ancestry have the lowest scores (Supplementary 360 
Figure 3.1). These results were recapitulated in the local ancestry GWAS (Supplementary Note 3).  361 
 362 
We found that RA-associated SNPs have undergone negative polygenic selection (p=7.93e-3, 363 
Supplementary Figure 5.1) over the last approximately 15,000 years; when this is decomposed by 364 
ancestry path, we found significant evidence for negative selection in both the CHG (p=3.09e-5) and 365 
ANA (p=1.20e-3) ancestry paths. We found no evidence for negative selection in the EHG and WHG 366 
paths, although both show a trend of increasing risk, and EHG nears significance (p=0.0842).  367 
 368 
These results demonstrate that genetic risk for RA was higher in the distant past, in contrast to MS, 369 
with RA-associated risk variants present at higher frequencies in European hunter-gatherer 370 
populations before the arrival of agriculture. In order to understand what caused the high risk in 371 
hunter-gatherer populations and subsequent negative selection, we again undertook a manual 372 
literature search for pleiotropic effects of SNPs associated with RA. Because the number of SNPs that 373 
reached genome-wide significance in the GWAS study and also showed statistically significant 374 
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evidence for directional selection was large, we only analysed LD-pruned SNPs (n=42). We found 375 
that the majority of selected SNPs were associated with protection against distinct pathogens and/or 376 
infectious diseases across all paths (disease or pathogen associated/total selected in ancestry path: 377 
pan-ancestry 9/13; ANA 10/13; CHG 8/11; EHG 10/16; WHG 10/12). We found that selected RA-378 
risk alleles were often linked to the same pathogens or diseases as in the MS analysis, although the 379 
number of protective associations to distinct pathogens were fewer (Supplementary Note 8, ST14, 380 
Supplementary Figure 8.1). 381 
 382 
DISCUSSION 383 
The last 10,000 years have seen some of the most extreme global experiments in lifestyle with the 384 
emergence of farming in some regions and a pastoral lifestyle in others. While 5,000 years ago farmer 385 
ancestry predominated across Europe, a relatively diverged ancestry arrived with the Steppe 386 
migrations around this time. We have shown that this ancestry contributes the most genetic risk for 387 
MS today, and that these variants were the result of positive selection coinciding with the emergence 388 
of a pastoralist lifestyle on the Pontic-Caspian Steppe, and continued selection in the subsequent 389 
admixed post-Stone Age populations in Europe. This ultimately created a legacy of heterogeneity in 390 
MS risk observed across Europe today. These results address the long-standing debate around the 391 
north-south gradient in MS prevalence in Europe, and suggest that the Steppe ancestry gradient in 392 
modern populations - specifically at the HLA region - across the continent causes this phenomenon in 393 
combination with environmental factors. Furthermore, while epistasis between MS-associated variants 394 
in the HLA region has been demonstrated before25, 26, 27, 28, we have shown that accounting for this 395 
explains 17% more variance than independent SNPs effects alone. Many of the haplotypes carrying 396 
these risk alleles have ancestry-specific origins, which could be exploited for individual risk 397 
prediction and may offer a pathway from ancestry associations into a mechanistic understanding of 398 
MS risk. We have contrasted these findings with results for rheumatoid arthritis (RA), another HLA 399 
class II associated chronic inflammatory disease, and found that the genetic risk for RA exhibits a 400 
contrasting pattern: genetic risk was highest in Stone Age hunter-gatherer ancestry and decreased over 401 
time.  402 
 403 
Our interpretation of this history is that co-evolution between pathogens and their human hosts has 404 
resulted in massive and divergent ancestry-specific selection on immune response genes according to 405 
lifestyle and environment, driven by a range of pathogenic drivers, and “recombinant favouring 406 
selection” after these populations merged. The Late Neolithic and Early Bronze Age was a time of 407 
massively increased infectious diseases in human populations, due to increased population density as 408 
well as contact with, and consumption of, domesticated animals. Many diseases trace their origins to 409 
this period, such as tuberculosis (TB) caused by the intracellular bacteria Mycobacterium tuberculosis 410 
or Mycobacterium bovis29, 30, bubonic plague caused by Yersinia pestis31, 32, 33, herpes simplex virus34, 411 
and chickenpox caused by varicella-zoster virus35, and we have shown that many of the MS- and RA-412 
associated variants under selection confer resistance to a range of infectious diseases and pathogens 413 
(Supplementary Note 8).  For example, HLA-DRB1*15:01 is associated with protection against TB36 414 
and increased risk for lepromatous leprosy37. However, we are underpowered to detect specific 415 
associations beyond this hypothesis due to poor knowledge of the distribution and diversity of past 416 
diseases, poor preservation of endogenous pathogens in the archaeological record, and a lack of well-417 
powered GWAS studies for many infectious diseases.  418 
 419 
A pattern that repeatedly appears is that of lifestyle change driving changes in risk and phenotypic 420 
outcomes. We have shown that in the past environmental changes driven by lifestyle innovation 421 
inadvertently drove an increase in genetic risk for MS. Today, with increasing prevalence of MS cases 422 
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observed over the last five decades38, 39), we again observe a striking correlation with changes in our 423 
environment, including lifestyle choices and improved hygiene, which no longer favours this previous 424 
genetic architecture. Instead, the fine balance of genetically-driven cells within the immune system, 425 
which are needed to combat a broad repertoire of pathogens without harming self-tissue, has been met 426 
with new challenges, including a potential absence of requirement. For example, while a population of 427 
immune cells, T helper 1 (Th1), direct strong cellular immune responses against intracellular 428 
pathogens, T helper 2 (Th2) cells mediate humoral immune responses against extracellular bacteria 429 
and parasites and further have the capacity to guide the restoring of homeostasis,thus preventing 430 
damage of the infected tissue via immune-regulatory cytokines. We have shown that the majority of 431 
selected MS-associated SNPs are associated with protection against a wide range of pathogens, 432 
consistent with strong but balanced Th1/Th2 immunity in the Bronze age, where a diversification of 433 
pathogens likely took place. In contrast, although MS pathogenesis is complex and multicellular of 434 
nature, CD4+ Th cells, in particular IFN-ɣ producing Th1 cells and IL-17-producing Th17 cells play a 435 
key role in disease development2. The skewed Th1/Th2 balance observed in MS may partly result 436 
from the developed world’s increased sanitation, which has led to drastically reduced burden of 437 
parasites, which the immune system had evolved to efficiently combat40. In the case of RA, the 438 
exposure of Hunter Gatherer populations to the respiratory or gastrointestinal pathogens linked to 439 
triggering RA41 was likely low. The new pathogenic challenges associated with agriculture, animal 440 
domestication, pastoralism, and higher population densities might have substantially increased the risk 441 
of developing RA in genetically predisposed individuals, resulting in negative selection. If true, this 442 
would present a parallel between RA in the Bronze Age and MS today, in which lifestyle changes 443 
have exposed previously favourable genetic variants as autoimmune disease risks.  444 
 445 
More broadly, it is clear that this was a critical period in human history during which highly 446 
genetically and culturally divergent populations evolved and eventually mixed. These separate 447 
histories dictate the genetic risk and prevalence of several autoimmune diseases today. Surprisingly, 448 
the emergence of the pastoralist Steppe lifestyle may have had an impact on immune response as great 449 
as or greater than the emergence of farming during the Neolithic transition, commonly held to be the 450 
greatest lifestyle change in human history.  451 
 452 
DATA AVAILABILITY 453 
All collapsed and paired-end sequence data for novel samples sequenced in this study will be made 454 
publicly available on the European Nucleotide Archive, together with trimmed sequence alignment 455 
map files, aligned using human build GRCh37. Previously published ancient genomic data used in 456 
this study are detailed in ST15, and are all already publicly available. 457 
 458 
CODE AVAILABILITY 459 
The modified version of CLUES used in this study is available from https://github.com/standard-460 
aaron/clues. The pipeline and conda environment necessary to replicate the analysis of allele 461 
frequency trajectories and polygenic selection in Supplementary Note 6 are available on Github at 462 
https://github.com/ekirving/ms_paper. The code to create Ancestry Anomaly scores based on 463 
Chromosome painting is on Github at https://github.com/danjlawson/ms_paper.  The codes to 464 
compute LDA and LDA score are available on Github at 465 
https://github.com/YaolingYang/LDAandLDAscore. The codes to implement HTRX and its 466 
simulation are on Github at https://github.com/YaolingYang/HTRX. The codes to implement ARS 467 
calculation are on Github at https://github.com/will-camb/ms_paper. 468 
 469 
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 504 
Supplementary Figure 1.1. Ancient sample PCA, map, ancestry proportions through time for 505 
samples in Denmark. (1) PC1 vs PC2 of the filtered Western Eurasian ancient samples included in 506 
this study. Black circled points are Danish Medieval and post-Medieval samples published here for 507 
the first time. Major component ancestry locations are labelled. (2) Map of ancient filtered Western 508 
Eurasian ancient samples included in this study (3a) Map of reference data and time transect of 509 
Denmark as in Figure 1. (3b) More recent ancient data (samples <4,200 years ago) not used as 510 
reference, showing the clines of the main ancestry components from (3a). 511 
 512 

 513 
Supplementary Figure 1.2. Modern prevalences of RA (left) and CD (right). 514 
Modern-day geographical distribution of RA and CD prevalence in Europe. Prevalence data for RA 515 
(cases per 100,000) was obtained from 42. For CD, the seroprevalence (%) is based on the presence of 516 
transglutaminase and/or endomysial autoantibodies; data were obtained from 43.  517 
 518 
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 519 
Supplementary Figure 1.3 Association between genome-wide Steppe ancestry, MS prevalence 520 
and DRB1*15:01 frequency in modern populations in the UK Biobank. 521 

 522 
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 523 

 524 
Supplementary Figure 2.1. Ancient and modern prevalences of HLA-DRB1*04:01 (rs3817964) 525 
and HLA-DQ2.5 (rs2187668). 526 
Top and middle: Ancient distributions of HLA-DRB1*04:01, the largest genetic risk factor in RA, 527 
and HLA-DQ2.5, the largest genetic risk factor in CD. Average frequency across all populations is 528 
shown (blue line, 10 time bins) as well as the Bronze Age (red shading).  529 
Bottom: Modern distribution of HLA-DRB1*04:01 (left) and HLA-DQ2.5 (right) in populations in 530 
the UK Biobank. NB the tag SNPs may be less effective at tagging these types in non-European 531 
populations, so we urge caution in interpretation - especially in African populations. 532 
 533 
    534 
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 535 
Supplementary Figure 3.1: Associations between local ancestry and RA in a modern population. 536 
a) Risk ratio of SNPs for RA based on weighted average prevalence (WAP; see Methods), when 537 
decomposed by inferred ancestry. Each ancestry is assigned a mean and confidence interval based on 538 
bootstrap resampling, for each chromosome (faded where non-significant). SNPs with risk ratio >1.15 539 
or <0.85 are annotated. b-c) Genome-wide Ancestral Risk Scores (ARS, see Methods) for RA. 540 
Confidence intervals are estimated by either bootstrapping over individuals (b, which can be 541 
interpreted as testing power to reject a null of no association between RA and ancestry) and 542 
bootstrapping over SNPs (c, which can be interpreted as testing whether ancestry is associated with 543 
RA genome-wide). 544 
 545 
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 546 
Supplementary Figure 3.2: Associations between local ancestry and CD in a modern population. 547 
a) Risk ratio of SNPs for CD based on weighted average prevalence (WAP; see Methods), when 548 
decomposed by inferred ancestry. Each ancestry is assigned a mean and confidence interval based on 549 
bootstrap resampling, for each chromosome (faded where non-significant). SNPs with risk ratio >1.15 550 
or <0.85 are annotated. b-c) Genome-wide Ancestral Risk Scores (ARS, see Methods) for CD. 551 
Confidence intervals are estimated by either bootstrapping over individuals (b, which can be 552 
interpreted as testing power to reject a null of no association between CD and ancestry) and 553 
bootstrapping over SNPs (c, which can be interpreted as testing whether ancestry is associated with 554 
CD genome-wide). 555 
 556 
 557 
 558 
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 559 
Supplementary Figure 4.1: Association with MS risk at externally ascertained SNPs, for (top) 560 
ancestry, and (bottom) SNPs.  561 
Due to the UK Biobank being less powered (having fewer cases) than the Case-Control study from 562 
which these SNPs were found, the only statistically significant association is in the HLA.  563 
  564 
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  565 
Supplementary Figure 4.2: Comparison between MS-risk and local ancestry for 3 example 566 
SNPs.  567 
In the HLA class II region, all SNPs share a pattern in which high Steppe ancestry is associated with 568 
high MS-risk. The risk decreases monotonically and is not present in the Steppe precursor populations 569 
(Hunter Gathers), but is with the admixed Bronze-age European populations (Steppe + Farmer).  570 
  571 
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 572 
 573 
Supplementary Figure 4.3: Decomposition of individuals ancestry at MS risk SNPs in terms of 574 
(left) the ancestry of those SNPs alone, or (right) the Weighted average prevalence of MS in 575 
each ancestry after “logit” transformation. 576 
  577 
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 578 
Supplementary Figure 4.4: Simulation study with four SNPs showing the boxplots of out-of-579 
sample variance (with the red line representing the average) explained by HTRX compared to 580 
GWAS, HTR and the true model.  581 
The total variance explained by HTRX is the same as SNP and bigger than HTR when there are no 582 
interactions. When interaction (with subtitle "int") exists, HTRX significantly outperforms GWAS 583 
and HTR. In all situations, HTRX works similarly to the truth. 584 
  585 
 586 
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 587 
Supplementary Figure 5.1: Evidence for selection on RA-associated SNPs. 588 
a) Stacked line plot of the pan-ancestry PALM analysis for RA, showing the contribution of alleles to 589 
disease risk over time. Individual SNPs are stacked, with their trajectories polarised to show the 590 
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frequency of the positive risk allele and weighted by their scaled effect size: when a given SNP bar 591 
becomes wider over time the risk allele has increased in frequency, and vice versa. SNPs are sorted by 592 
their marginal p-value and direction of effect, with selected SNPs that increase risk plotted on top. 593 
SNPs are also coloured by their marginal p-values, and significant SNPs are shown in yellow. The y-594 
axis shows the scaled polygenic risk score (PRS), which ranges from 0 to 1, representing the 595 
maximum possible additive genetic risk in a population. 596 
b) Posterior likelihood trajectory for rs660895, tagging HLA-DRB1*04:01, inferred by CLUES. 597 
 598 

 599 
Supplementary Figure 6.1: Simulating Low LDA score. 600 
Left: A simulated history in which a single population splits into two (“Steppe” and “Farmer”) after 601 
2200 generations and experiences positive selection on different loci (݉ଵ in ଵܲ and ݉ଶ in ଶܲ). After 602 
2900 generations the populations merge (“Europeans”) but selection continues on both loci. 603 

604 
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 605 
Supplementary Figure 6.2: LDAS simulation with positive or balancing selection in the modern 606 
population.  The left two columns show simulations with a single variant satisfying the observed 607 
constraint that modern-day frequencies are not decreasing (i.e. not negative selection). The right 608 
column shows simulations with two variants, also obeying this constraint. The model for simulating 2 609 
loci is the same as in Supplementary Figure 6.1, and that for 1 locus is in the top right of this plot 610 
(which differs only in the location of the selected variant in the separated populations). 611 
 612 
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 613 
Supplementary Figure 6.3: LDAS simulation with single locus negatively selected in the modern 614 
population. In two cases this generates a low LDAS score, which requires recent negative selection 615 
(which is ruled out for HLA by the observed frequency trend). In this case, one ancestry dominates 616 
the region and recombination to the other conveys risk. The model used is in the top right of 617 
Supplementary Figure 6.2. 618 
 619 
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 620 
 621 
Supplementary Figure 6.4: LDAS on chromosome 6 and 2. LDA score is a) high in the 622 
LCT/MCM6 region while is b) low in the HLA region. 623 
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 624 
Supplementary Figure 6.5: Pairwise Linkage Disequilibrium (LD) plot (measured by D’) for all 625 
the MS-associated SNPs on chromosome 6. 626 
 627 
 628 
 629 

 630 
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Supplementary Figure 7.1 Allele frequency plots for positively selected MS-associated SNPs that 631 
are also associated with other phenotypes in the UK Biobank. Traits 1-5. 632 
SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their 633 
effect on the marginal UK Biobank trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered 634 
according to the number of common SNPs, non-significant SNPs are shown with partial transparency, 635 
portions of the trajectory with low posterior density are cropped off, and the background is shaded for 636 
the approximate time period in which the ancestry existed as an actual population. 637 
 638 

 639 
Supplementary Figure 7.2 Allele frequency plots for positively selected MS-associated SNPs that 640 
are also associated with other phenotypes in the UK Biobank. Traits 6-10. 641 
SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their 642 
effect on the marginal UK Biobank trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered 643 
according to the number of common SNPs, non-significant SNPs are shown with partial transparency, 644 
portions of the trajectory with low posterior density are cropped off, and the background is shaded for 645 
the approximate time period in which the ancestry existed as an actual population. Note that many 646 
phenotypes are underpowered in the UKBiobank GWAS, hence why MS appears as just the joint 7th 647 
in this list. 648 
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 649 
Supplementary Figure 7.3 Allele frequency plots for positively selected MS-associated SNPs that 650 
are also associated with other phenotypes in the UK Biobank. Traits 11-15. 651 
SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their 652 
effect on the marginal UK Biobank trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered 653 
according to the number of common SNPs, non-significant SNPs are shown with partial transparency, 654 
portions of the trajectory with low posterior density are cropped off, and the background is shaded for 655 
the approximate time period in which the ancestry existed as an actual population. 656 
 657 
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 658 
Supplementary Figure 8.1 The number of protective associations with pathogens or infectious 659 
diseases for the MA- and RA-associated selected SNPs 660 
The number of protective associations to specific pathogens and/or diseases associated with the MS- 661 
and RA-SNPs that showed statistically significant evidence for selection using CLUES. One SNP can 662 
have a link to more than one pathogen and/or disease (see ST13 and ST14  for details on each SNP). 663 
Fifteen and twelve SNPs had no detectable links to any pathogen or infectious disease in the MS and 664 
RA SNP sets, respectively. 665 
 666 
 667 
METHODS 668 
Data Generation 669 
Overview 670 
In order to examine variants associated with phenotypes backwards in time, we assembled a large 671 
ancient DNA dataset. Here we present new genomic data from 86 ancient individuals from Medieval 672 
and post-Medieval periods from Denmark (Supplementary Figure 1, Supplementary Note 1, ST1). 673 
The samples range in age from around the XIth to the XVIIIth century. We extracted ancient DNA 674 
from tooth cementum or petrous bone and shotgun sequenced the 86 genomes to a depth of genomic 675 
coverage ranging from 0.02 X to 1.6 X (mean = 0.39 X and median = 0.27 X). The genomes of the 676 
new 86 individuals were imputed using the 1,000 Genomes phased data as a reference panel by an 677 
imputation method designed for low coverage genomes (GLIMPSE44), and we also imputed 1,664 678 
ancient genomes presented in the accompanying study ‘Population Genomics of Stone Age Eurasia’9. 679 
Depending on the specific data quality requirements for the downstream analyses, we filtered out 680 
samples with poor coverage, variant sites with low MAF and with low imputation quality (average 681 
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genotype probability < 0.98). Our dataset of ancient individuals span approximately 15,000 years 682 
across Eurasia (Supplementary Figure 1).  683 
 684 
Ancient data DNA extraction and library preparation  685 
Laboratory work was conducted in the dedicated ancient DNA clean-room facilities at the Lundbeck 686 
Foundation GeoGenetics Centre (Globe Institute, University of Copenhagen). A total of 86 Medieval 687 
and post-Medieval human samples from Denmark (ST2) were processed using semi-automated 688 
procedures. Each sample was processed in parallel. For each extract non USER-treated and USER-689 
treated (NEB) libraries were built45. All libraries were sequenced on the NovaSeq6000 instrument at 690 
the GeoGenetics Sequencing Core, Copenhagen, using S4 200 cycles kits version 1.5. A more 691 
detailed description of DNA extraction and library preparation can be found in Supplementary Note 1. 692 
 693 
Basic bioinformatics 694 
The sequencing data was demultiplexed using the Illumina software BCL Convert 695 
(https://emea.support.illumina.com/sequencing/sequencing_software/bcl-convert.html, Illumina Inc.) . 696 
Adapter sequences were trimmed and overlapping reads were collapsed using AdapterRemoval 697 
(2.2.446). Single-end collapsed reads of at least 30bp and paired-end reads were mapped to the human 698 
reference genome build 37 using bwa (0.7.1747) with seeding disabled to allow for higher sensitivity. 699 
Paired- and single-end reads for each library and lane were merged, and duplicates were marked using 700 
Picard MarkDuplicates (2.18.26, http://picard.sourceforge.net) with a pixel distance of 12000. Read 701 
depth and coverage were determined using samtools (1.1048) with the all sites used in the calculation 702 
(-a). Data was then merged to sample level and duplicates were marked again. 703 
 704 
DNA authentication 705 
In order to determine the authenticity of the ancient reads, post-mortem DNA damage patterns were 706 
quantified using mapDamage2.049. Next, two different methods were used to estimate the levels of 707 
contamination. Firstly, we applied ContamMix in order to quantify the fraction of exogenous reads in 708 
the mitochondrial reads by comparing the mtDNA consensus genome to possible contaminant 709 
genomes50. The consensus was constructed using an in-house perl script that used sites with at least 5x 710 
coverage, and bases were only called if observed in at least 70% of reads covering the site. Lastly, we 711 
applied ANGSD (0.93151) to estimate nuclear contamination by quantifying heterozygosity 712 
on the X chromosome in males. Both contamination estimates only used filtered reads 713 
with a base quality of  ≥20 and mapping quality of ≥30. 714 
 715 
Imputation 716 
We combined the 86 newly sequenced Medieval and post-Medieval Danish individuals with 1,664 717 
previously published ancient genomes9. We then excluded individuals showing: 718 
contamination (more than 5%); low autosomal coverage (less than 0.1 X); low 719 
genome-wide average imputation genotype probability (less than 0.98), and we chose 720 
the best quality sample in a close relative pair (first or second degree relative). A total 721 
of 1,557 individuals passed all filters, and were used in downstream analyses. We 722 
restricted the analysis to SNPs with imputation INFO score ≥ 0.5 and MAF ≥ 0.05. 723 
 724 
Kinship analysis and uniparental haplogroup inferences 725 
READ52 was used to detect the degree of relatedness between pairs of individuals. 726 
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The mtDNA haplogroups of the Medieval and post-Medieval individuals were assigned using 727 
HaploGrep253. Y chromosome haplogroup assignment was inferred following the workflow already 728 
published54. More details can be found in Supplementary Note 2. 729 
 730 
Population genetic analyses 731 
We used principal component analysis (PCA) (Supplementary Figure 1.1) to investigate the overall 732 
population structure of the dataset. We used plink55, excluding SNPs with minor allele frequency 733 
(MAF) < 0.05 in the imputed panel. Based on 1,210 ancient western Eurasia imputed genomes, the 734 
Medieval and post-Medieval samples cluster very close to each other, displaying a relatively low 735 
genetic variability and situated within the genetic variability observed in the post-Bronze Age western 736 
Eurasian populations.  737 
 738 
We used three methods to estimate ancestry components in our ancient samples: model-based 739 
clustering (ADMIXTURE56) (Supplementary Note 1, Figure S1.1) on a subset of 826,248 SNPs; 740 
qpAdm57 (Supplementary Note 1 Figure S1.2 and Table S1.1) with a reference panel of three genetic 741 
ancestries (WHG, Neolithic Farmer, and Steppe) on the same 826,248 SNPs. We performed qpAdm 742 
applying the option “allsnps: YES” and a set of 7 outgroups was used as "right populations": 743 
Siberia_UpperPaleolithic_UstIshim, Siberia_UpperPaleolithic_Yana, 744 
Russia_UpperPaleolithic_Sunghir, Switzerland_Mesolithic, Iran_Neolithic, Siberia_Neolithic, 745 
USA_Beringia. We set a minimum threshold of 100,000 SNPs and only results with p > 0.05 only 746 
have been considered. Finally we ran chromosome painting58 using a panel of 7 ancestries (as on the 747 
UK Biobank). We ran chromosome painting on all ancient individuals not in the reference panel, 748 
using a reference panel of ancient donors grouped into populations to represent specific ancestries: 749 
western hunter-gatherer (WHG), eastern hunter-gatherer (EHG), Caucasus hunter-gatherer (CHG), 750 
Neolithic Farmer, Yamnaya, African and EastAsian (method described in 9 Supplementary Note 3h). 751 
Painting followed the pipeline of 59 based on GLOBETROTTER60, with admixture proportions 752 
estimated using Non-Negative Least squares. We also painted individuals born in Denmark of a 753 
typical ancestry based on density-based clustering of the first 18 PCs9. This generated both local 754 
ancestry probabilities and genome-wide ancestry fractions for each painted individual. The reference 755 
panel used for chromosome painting was designed to capture the various components of European 756 
ancestry only, and so we urge caution in interpreting these results for non-European samples.  757 
 758 
This dataset provides the opportunity to study the population history of Denmark from the Mesolithic 759 
to the post-Medieval period, covering around 10,000 years, which can be considered a typical 760 
Northern European population. Our results clearly demonstrate the impact of previously described 761 
demographic events, including the influx of Neolithic Farmer ancestry ~9,000 years ago and Steppe 762 
ancestry ~5,000 years ago12, 10. We highlight genetic continuity from the Bronze Age to the post-763 
Medieval period (Supplementary Note 1 Figure S1.1), although qpAdm detected a small increase in 764 
the Neolithic Farmer component during the Viking Age (Supplementary Note 1 Figure S1.2 and  765 
Table S1.1), while the Medieval period marked a time of increased genetic diversity, likely reflecting 766 
increased mobility across Europe. This genetic continuity is further confirmed by the haplogroups 767 
identified in the uniparental genetic makers (Supplementary Note 2). Together, these results suggest 768 
that after the Bronze Age Steppe migration there was no other major gene flow into Denmark from 769 
populations with significantly different Neolithic and Bronze Age ancestry compositions, and 770 
therefore no changes in these ancestry components in the Danish population.   771 
 772 
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Local ancestry 773 
We used two estimates of local ancestry from 9: (1) first coalescent labels generated by running 774 
Chromopainter58 on all “White British” individuals in the UK Biobank, using the same reference 775 
panel described above. Henceforth ‘local ancestry’. (2) Ancestry path labels in GBR, FIN and TSI 776 
1000G populations61) and 1015 ancient genomes generated using a neural network to assign ancestry 777 
paths based on a sample’s nearest neighbours at the first five informative nodes of a marginal tree 778 
sequence, where an informative node is defined as one which has at least one leaf from the reference 779 
set of ancient samples described above (9 Supplementary Note S3i). Henceforth ‘ancestry path labels’.  780 
 781 
SNP associations  782 
We aimed to generate SNP associations from previous studies for each phenotype in a consistent 783 
approach. To generate a list of SNPs associated with multiple sclerosis (MS), rheumatoid arthritis 784 
(RA) and celiac disease (CD), we used two approaches: in the first, we downloaded fine-mapped 785 
SNPs from previous association studies. For each fine-mapped SNP, if the SNP did not have an 786 
ancestry path label, we found the SNP in highest LD that did, with a minimum threshold of ݎଶ ≥ 0.7 787 
in the GBR, FIN and TSI 1000G populations using LDLinkR62. The final SNPs used for each 788 
phenotype can be found in ST4 (MS), ST5 (RA), and ST6 (CD).  789 
 790 
For MS, we used data from 3. For non-MHC SNPs, we used the ‘discovery’ SNPs with P(joined) and 791 
OR(joined) generated in the replication phase. For MHC variants, we searched the literature for the 792 
reported HLA alleles and amino-acid polymorphisms  (ST3). In total, we generated 205 SNPs which 793 
were either fine-mapped or in high LD with a fine-mapped SNP (15 MHC, 190 non-MHC).  794 
 795 
For RA, we downloaded 57 genome-wide significant non-MHC SNPs for seropositive RA in 796 
Europeans63. We retrieved MHC associations separately (64, with associated ORs and p-values from 797 
65). In total, we generated 51 SNPs which were either fine-mapped or in high LD with a fine-mapped 798 
SNP (3 MHC, 48 non-MHC).  799 
 800 
For CD, we retrieved non-MHC SNPs from 66. We used MHC SNPs from 67, with associated ORs and 801 
p-values from 68. In total, this generated 32 SNPs which were either fine-mapped or in high LD with a 802 
fine-mapped SNP (3 MHC, 29 non-MHC).  803 
 804 
Secondly, because we could not always find tag SNPs for fine-mapped SNPs that were present in our 805 
ancestry path labels dataset, we found that we were losing significant signal from the HLA, therefore 806 
we generated a second set of SNP associations. We downloaded full summary statistics for each 807 
disease (MS: 3; RA: 69, CD: http://www.nealelab.is/uk-biobank/), restricted to sites present in the 808 
ancestry path labels dataset, and ran Plink’s (PLINK v1.90b4.470) clump method (parameters: --809 
clump-p1 5e-8 --clump-r2 0.05 --clump-kb 250 as in 71 using LD in the GBR, FIN and TSI 1000G 810 
populations61 to extract genome-wide significant independent SNPs.  811 
 812 
In the main text we report results for the first set of SNPs (‘fine-mapped’) for analyses involving local 813 
ancestry in modern data, and the second set of SNPs (‘pruned’) for analyses involving polygenic 814 
measures of selection (CLUES/PALM).  815 
 816 
REGIONS OF UNUSUAL ANCESTRY AND GENE ENRICHMENT 817 
To assess which regions of ancestry were unusual, we converted the ancestry estimates to a Z-score. 818 
Specifically, we let ܣ(݅, ݆, ݆) denote the probability of the ݇th ancestry (݇ = 1, . . .  at the ݆th SNP 819 (ܭ,
(݆ = 1, . . . , ݅) of a chromosome for the ݅th individual (ܬ = 1, . . . ,ܰ). We then computed the mean 820 
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painting for each SNP, ܣ(݆, ݇) = ଵே ∑ேୀଵ ,݅)ܣ ݆, ݇). From this we estimated a scale parameter ߤ  821 
and deviation parameter ߪ using a block-median approach. Specifically we partitioned the genome 822 
into 0.5Mb regions, and within each, computed the mean and standard deviation of the ancestry. The 823 
parameter estimates are then the median values over the whole genome. We then computed an 824 
anomaly score for each SNP for each ancestry ܼ(݆, ݇) = ,݆)ܣ) ݇) − ߤ  . 825ߪ/(
 826 
To arrive at an anomaly score for each SNP aggregated over all ancestries, we also had to account for 827 
correlations in the ancestry paintings. Instead of scaling each ancestry deviation ܣ∗(݆, ݇) = ,݆)ܣ ݇) ߤ 828−  by its standard deviation, we instead “whitened” them, i.e. rotated the data to have an independent 829 
signal.  Let ܥ = ∗ܣ்∗ܣ  by a ܭ × ଵିܥ covariance matrix, and let ܭ =  be the Singular Value 830 ்ܸܦܷ
Decomposition. Then ܹ = ܼ ଵ/ଶ is the whitening matrix from whichܦܷ =  are normally 831 ܹ∗ܣ
distributed with covariance matrix diag(1) under the null that ܣ∗ is normally distributed with mean 0 832 
and unknown covariance ߑ. The “ancestry anomaly score” test statistic for each SNP is ݐ(݆) =833 ∑ୀଵ ܼ(݆, ݇)ଶ, which is Chi-squared distributed with ܭ degrees of freedom under the null, and we 834 
reported p-values from this. 835 
 836 
To test for gene enrichment we formed a list of all SNPs reaching genome-wide significance ( <837 5ି଼) and using the R package gprofiler272 converted these to a unique list of genes. We then used gost 838 
to perform an enrichment test for each GO term, for which we used default p-value correction via the 839 
g:Profiler SCS method. This is an empirical correction based on performing random lookups of the 840 
same number of genes under the null, to control the error rate and ensure that 95% of reported 841 
categories (at p=0.05) are correct. 842 
 843 
ALLELE FREQUENCY PLOTS OVER TIME 844 
To investigate how effect allele frequencies have changed over time, we extracted high effect alleles 845 
for each phenotype from the ancient data. We excluded all non-Eurasian samples, grouped them by 846 
‘groupLabel’, excluded any group with fewer than 4 samples, and coloured points by ancestry 847 
proportion according to genome-wide NNLS based on chromosome painting (above).  848 
 849 
CLUSTER ANALYSIS 850 
In order to understand whether risk-conferring haplotypes evolved in the Steppe population, or in a 851 
pre- or post-dating population in which Steppe ancestry is high, we used k-means clustering on the 852 
dosage of each ancestry for each selected significant SNP and investigated the dosage distribution of 853 
clusters with significantly higher MS prevalence. For the target SNPs, the Elbow method73. suggested 854 
selecting around 5-7 clusters, of which we chose 6. After performing the k-means cluster analysis, we 855 
calculated the average probability for each ancestry for case individuals. Furthermore, we calculated 856 
the prevalence of MS in each cluster, and performed a one-sample t-test to investigate whether it 857 
differs from the overall MS prevalence (0.487%). This tests whether particular combinations of 858 
ancestry are associated with the phenotype at a SNP. Clusters with high MS risk-ratios have high 859 
Steppe components (Supplementary Figure 4.2), leading to the conclusion that Steppe ancestry alone 860 
is driving this signal. 861 
 862 
WEIGHTED AVERAGE PREVALENCE 863 
In order to quantify the risk of each ancestry for each SNP, we calculated the weighted average 864 
prevalence (WAP) for each ancestry based on the result of k-means clustering (above). 865 
  866 
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For the ݆th SNP, let ܲ = ݊ ܲ denote the sum of the ݇th ancestry probabilities of all the 867 
individuals in the ݉th cluster (݇,݉ = 1, . . . ,6), where ݊ is the cluster size of the ݉th cluster. Let 868 ߨ denote the prevalence of MS in the ݉th cluster, the weighted average prevalence for the ݇th 869 
ancestry is defined as: 870 ߨ = ೕೖగೕ∑లసభ ೕೖ , 871 

where ܲ is defined as the weight for each cluster. 872 
  873 
For each ancestry, WAP measures the association of that ancestry with MS risk across all clusters. To 874 
make a clear comparison, we calculated the risk ratio (compared to the overall MS prevalence) for 875 
each ancestry at each SNP, and assigned a mean and confidence interval for the risk ratios of each 876 
ancestry at each chromosome (Figure3, Supplementary Figure 3.1 and 3.2).  877 
 878 
PCA/UMAP OF WAP/AVERAGE DOSAGE 879 
We performed principal component analysis (PCA) on the average ancestry probability and WAP at 880 
each MS-associated SNP (Supplementary Figure 4.3). The former shows that all of the HLA SNPs 881 
except three from HLA class II and III have much larger Outgroup components compared with the 882 
others. The latter analysis indicates a strong association between Steppe and MS risk. Also, Outgroup 883 
ancestry at rs10914539 from chromosome 1 exceptionally reduces the incidence of MS, while 884 
Outgroup ancestry at rs771767 (chromosome 3) and rs137956 (chromosome 22) significantly boosts 885 
MS risk. 886 
 887 
ANCESTRAL RISK SCORES 888 
Following methods developed in Irving-Pease et al. (submitted), we calculated the effect allele 889 
painting frequency for a given ancestry {݂,} for SNP ݅ using the formula: 890 

{݂,} = ∑ெ ெೌ∑{,,}ݕݐ݊݅ܽݐݎ݁ܿ ݃݊݅ݐ݊݅ܽܲ {,,}ݕݐ݊݅ܽݐݎ݁ܿ ݃݊݅ݐ݊݅ܽܲ  + ∑ெ  891 ,{,,}ݕݐ݊݅ܽݐݎ݁ܿ ݃݊݅ݐ݊݅ܽܲ

where there are ܯ௧   individuals homozygous for the effect allele, ܯ௧ individuals homozygous 892 

for the other allele, and ∑ெ  is the sum of the painting 893 {,,}ݕݐ݊݅ܽݐݎ݁ܿ ݃݊݅ݐ݊݅ܽܲ
probabilities for that ancestry ܽ݊ܿ in individuals homozygous for the effect allele at SNP ݅. This can 894 
be interpreted as an estimate of an ancestral contribution to effect allele frequency in a modern 895 
population. Per-SNP painting frequencies can be found in ST4, ST5, and ST6. 896 
  897 
To calculate the ancestral risk score (ARS) we summed over all ܫ pruned SNPs in an additive model: 898 ܴܵܣ = ூ {݂,} ∗ ܽݐܾ݁  . 899 

 900 

We then ran a transformation step as in 74. To obtain 95% confidence intervals, we ran an accelerated 901 
bootstrap over loci, which accounts for the skew of data to better estimate confidence intervals 75. 902 
 903 
LOCAL ANCESTRY AND GENOTYPE GWAS 904 
We used the UK Biobank to fit GWAS models for local ancestry values and genotype values 905 
separately, using only SNPs known to be associated with the phenotype (‘fine-mapped’ SNPs). We 906 
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used the following phenotype codes for each phenotype: MS: Data-Field 131043; RA: Data-Field 907 
131849 (seropositive); CD: Data-Field 21068. 908 
  909 
Let Yi denote the phenotype status for the ith individual (݅ = 1, . . . ,399998), which takes value 1 for a 910 
case and 0 for control, and let ߨ = )ݎܲ ܻ = 1) denote the probability that this individual has the 911 
event. Let ܺ denote the ݇th ancestry probability (݇ = 1, . . . ݆) for the ݆th SNP (ܭ, = 1, . . . ,205) of 912 
the ݅th individual. ܥ is the ܿth predictor (ܿ = 1, . . . , ܰ) for the ݅th individual. We used the following 913 
logistic regression model for GWAS, which assumes the effects of alleles are additive: 914 

ܻ~݊݅ܤ(ߨ,1); )݈݃  1ߨ − (ߨ = ୀଵ ߚ ܺ + ேୀଵ ܥ ߛ . 915 

 916 
We used Nc=20 predictors in the GWAS models, including sex, age and the first 18 PCs, which are 917 
sufficient to capture most of the population structure in the UK Biobank76. 918 
  919 
First, we built the model with ܭ = 1. By using only one ancestry probability in each model, we aimed 920 
to find the statistical significance of each SNP under each ancestry. Then, we built the model with 921 ܭ = 5, i.e. using all 6 local ancestry probabilities which sum to 1. We calculated the variance 922 
explained by each SNP by summing up the variance explained by ܺ(k=1,...,5). 923 
  924 
We considered fitting the multivariate models by using all the SNPs as covariates. However, the 925 
dataset only contains 1,982 cases. Even though only one ancestry is included, the multivariate model 926 
contains 191 predictors, which could result in overfitting problems. Therefore, the GWAS models are 927 
preferred over multivariate models. 928 
  929 
We also fitted a logistic regression model for GWAS using the genotype data as follows: 930 

ܻ~݊݅ܤ(ߨ,1); )݈݃  1ߨ − (ߨ = ߚ ܺ + ேୀଵ ܥ ߛ , 931 

where ܺ ∈ {0,1,2} denotes the number of copies of the reference allele of the jth SNP (݆ =932 1, . . . ,205) that the ݅th individual has, and ܥ (ܿ = 1, . . . , ܰ) denotes the covariates including age, sex 933 
and first 18 PCs for the ith individual, where Nc=20. Due to the UK Biobank being underpowered 934 
compared to the Case-Control study from which these SNPs were found, the only statistically 935 
significant (at  < 10ିହ) association is in the HLA class II tagging HLA-DRB1*15:01. 936 
 937 
COMPARISON OF GWAS MODELS USING PAINTING AND GENOTYPE DATA 938 
We compared the variance explained by SNPs from the GWAS model using the painting data (all 6 939 
local ancestry probabilities) with that from GWAS model using the genotype data. McFadden’s 940 
pseudo R squared measure77 is widely used for estimating the variance explained by the logistic 941 
regression models. McFadden’s pseudo R squared is defined as 942 ܴଶ = 1 −  943 ,(ܮ)݈݉(ெܮ)݈݊

where ܮெ and 0 are the likelihoods for the fitted and the null model, respectively. Taking overfitting 944 
into account, we propose the adjusted McFadden’s pseudo R squared by penalizing the number of 945 
predictors: 946 ݀݁ݐݏݑ݆݀ܣ ܴଶ = 1 − ܰ)/(ெܮ)݈݊ − ܰ)/(ܮ)݈݊(݇ − 1) , 947 
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where N is the sample size and k is the number of predictors. 948 
 949 
Specifically, ܴଶ(ܵܰܲݏ) is calculated as the extra variance in addition to sex, age and 18 PCs that can 950 
be explained by SNPs: 951 ܴଶ(ܵܰܲݏ) = ܴଶ(ݔ݁ݏ + ܽ݃݁ + ݏܥܲ 18 + (ݏܲܰܵ − ܴଶ(ݔ݁ݏ + ܽ݃݁ +  952 .(ݏܥܲ 18
 953 
Notably, two SNPs stand out for explaining much larger variance than others when fitting the GWAS 954 
model using the genotype data, but overall more SNPs from GWAS painting explain more than 0.1% 955 
variance, which indicates the painting data are probably more efficient for estimating the effect sizes 956 
of SNPs and detecting significant SNPs. Also, some SNPs from GWAS models using painting data 957 
explain almost the same amount of variance, suggesting that these SNPs consist of very similar 958 
ancestries.  959 
 960 
HAPLOTYPE TREND REGRESSION WITH eXtra FLEXIBILITY (HTRX) 961 
We propose Haplotype Trend Regression with eXtra flexibility (HTRX) which searches for haplotype 962 
patterns that include single SNPs and non-contiguous haplotypes. HTRX is an association between a 963 
template of n SNPs and a phenotype. A template gives a value for each SNP taking values of ‘0’ or 964 
‘1’, reflecting whether the reference allele of each SNP is present or absent, or an ‘X’ meaning either 965 
value is allowed. For example, haplotype ‘1X0’ corresponds to a 3-SNP haplotype where the first 966 
SNP is the alternative allele and the third SNP is the reference allele, while the second SNP can be 967 
either the reference or the alternative allele. Therefore, haplotype ‘1X0’ is essentially only a 2-SNP 968 
haplotype. 969 
 970 
To examine the association between a haplotype and a binary phenotype, we replace the genotype 971 
term with a haplotype from the standard GWAS model: 972 ܻ~݊݅ܤ(ߨ,1); )݈݃  గଵିగ) = ܪߚ + ∑ேୀଵ  , 973ܥ ߛ

where ܪ denotes the ݆th haplotype probability for the ith individual: 974 

 975 
 976 

HTRX can identify gene-gene interactions, and is superior to HTR not only because it can extract 977 
combinations of significant SNPs within a region, leading to improved predictive performance, but 978 
the haplotypes are more interpretable as multi-SNP haplotypes are only reported when they lead to 979 
increased predictive performance. 980 
 981 
HTRX Model selection procedure for shorter haplotypes 982 
Fitting HTRX models directly on the whole dataset can lead to significant overfitting, especially when 983 
the number of SNPs increases. When overfitting occurs, the models experience poorer predictive 984 
accuracy against unseen data.  Further, HTRX introduces an enormous model space which much be 985 
searched. 986 
 987 
To address these problems, we implement a two-step procedure. 988 
 989 
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Step 1: select candidate models. This is to address the model search problem, and is chosen to obtain 990 
a set of models more diverse than traditional bootstrap resampling (Efron, 197978). 991 
 992 
(1) Randomly sample a subset (50%) of data. Specifically, when the outcome is binary, stratified 993 
sampling is used to ensure the subset has approximately the same proportion of cases and controls as 994 
the whole data; 995 
 996 
(2) Start from a model with fixed covariates (18 PCs, sex and age), and perform forward regression on 997 
the subset, i.e. iteratively choose a feature (in addition to the fixed covariates) to add whose inclusion 998 
enables the model to explain the largest variance, and select ݏ models with the lowest Bayesian 999 
Information Criteria (BIC)79 to enter the candidate model pool; 1000 
 1001 
(3) repeat (1)-(2) ܤ times, and select all the different models in the candidate model pool as the 1002 
candidate models. 1003 
 1004 
Step 2: select the best model using 10-fold cross-validation. 1005 
 1006 
(1) Randomly split the whole data into 10 groups with approximately equal sizes, using stratified 1007 
sampling when the outcome is binary; 1008 
 1009 
(2) In each of the 10 folds, use a different group as the test dataset, and take the remaining groups as 1010 
the training dataset. Then, fit all the candidate models on the training dataset, and use these fitted 1011 
models to compute the additional variance explained by features (out-of-sample ܴଶ) in the test 1012 
dataset. Finally, select the candidate model with the biggest average out-of-sample ܴଶ as the best 1013 
model. 1014 
 1015 
HTRX Model selection procedure for longer haplotypes (Cumulative HTRX) 1016 
Longer haplotypes are important for discovering interactions. However, there are 3 − 1 haplotypes 1017 
in HTRX if the region contains ݇ SNPs, making it unrealistic for regions with large numbers of SNPs. 1018 
To address this issue, we proposed cumulative HTRX to control the number of haplotypes, which is 1019 
also a two-step procedure. 1020 
 1021 
Step 1: extend haplotypes and select candidate models. 1022 
 1023 
(1) Randomly sample a subset (50%) of data, use stratified sampling when the outcome is binary. This 1024 
subset is used for all the analysis in (2) and (3); 1025 
 1026 
(2) Start with ܮ randomly chosen SNPs from the entire ݇ SNPs, and keep the top ܯ haplotypes that 1027 
are chosen from the forward regression. Then add another SNP to the ܯ  haplotypes to create 3ܯ + 2 1028 
haplotypes. There are 3ܯ haplotypes obtained by adding `0', `1' or `X' to the previous ܯ haplotypes, 1029 
as well as 2 bases of the added SNP, i.e. `XX...X0' and `XX...X1' (as `X' was implicitly used in the 1030 
previous step). The top ܯ haplotypes from them are then selected using forward regression. Repeat 1031 
this process until obtaining ܯ haplotypes which include ݇ − 1 SNPs;  1032 
 1033 
(3) Add the last SNP to create 3ܯ + 2 haplotypes. Afterwards, start from a model with fixed 1034 
covariates (18 PCs, sex and age), perform forward regression on the training set, and select ݏ models 1035 
with the lowest BIC to enter the candidate model pool; 1036 
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 1037 
(4) repeat (1)-(3) ܤ times, and select all the different models in the candidate model pool as the 1038 
candidate models. 1039 
 1040 
Step 2: select the best model using 10-fold cross-validation, as described in “HTRX Model selection 1041 
procedure for shorter haplotypes”. 1042 
 1043 
We note that because the search procedure in Step 1(2) may miss some highly predictive haplotypes, 1044 
cumulative HTRX acts as a lower bound on the variance explainable by HTRX. 1045 
 1046 
As a model criticism, only common and highly predictive haplotypes (i.e. those with the greatest 1047 
adjusted ܴଶ) are correctly identified, but the increased complexity of the search space of HTRX leads 1048 
to haplotype subsets that are not significant on their own but are significant when interacting with 1049 
other haplotype subsets being missed. This issue would be eased if we increase all the parameters ܯ 1050 ,݈ ,ݏ and ܤ but with higher computational cost, or improve the search by optimizing the order of adding 1051 
SNPs. This leads to a decreased certainty that the exact haplotypes proposed are `correct', but together 1052 
reinforces the inference that interaction is extremely important. 1053 
 1054 
Simulation for HTRX 1055 
To investigate how the total variance explained by HTRX compare to GWAS and HTR, we used a 1056 
simulation study comparing: 1057 
(1) linear models (denoted by "lm") and generalized linear models with a logit link-function (denoted 1058 
by "glm"); 1059 
(2) models with or without actual interaction effects; 1060 
(3) models with or without rare SNPs (frequency smaller than 5%); 1061 
(4) remove or retain rare haplotypes when rare SNPs exist. 1062 
 1063 
We started from creating the genotypes for 4 different SNPs ܩ (݅ = 1, . . . ,100,000 denotes the 1064 
index of individuals, ݆ = 1("1ܺܺܺ"), 2("ܺ1ܺܺ"), 3("ܺܺ1ܺ") ܽ݊݀ 4("ܺܺܺ1") represents the index 1065 
of SNPs, and ݍ = 1,2 for two genomes as individuals are diploid). If no rare SNPs were included, we 1066 
sampled the frequency ܨ  of these 4 SNPs from 5% to 95%; otherwise, we sampled the frequency of 1067 
the first 2 SNPs from 2% to 5% (in practice, we obtained ܨଵ = 2.8% and ܨଶ = 3.1% under our seed) 1068 
while the last 2 SNPs from 5% to 95%. For the ݅th individual, we sampled ܩ~݊݅ܤ(ܨ,1) for the ݍth 1069 
genome of the ݆th SNP, and took the average value of two genomes as the genotype for the ݆th SNP of 1070 
the ݅th individual: ܩ = ீೕభାீೕమଶ . Based on the genotype data, we obtained the haplotype data for 1071 
each individual, and we considered removing haplotypes rarer than 0.1% or not when rare SNPs were 1072 
generated. In addition, we sampled 20 fixed covariates (including sex, age and 18 PCs) ܥ where ܿ =1073 1, . . . ,20 from UK Biobank for 100000 individuals. 1074 
 1075 
Next, we sampled the effect sizes of SNPs ீߚೕ and covariates ߚ, and standardize them by their 1076 

standard deviations: ீߚ~ (ିଵ,ଵ)௦ௗ(ீೕ)  and ߚ~ (ିଵ,ଵ)௦ௗ()  for each fixed ݆ and ܿ, respectively. When 1077 

interaction exists, we created a fixed effect size for haplotype "11XX" as twice the average absolute 1078 
SNP effects: ߚுభ = ଵଶ∑ସୀଵ ଵܪ ,ଵ refers to "11XX"; otherwiseܪ ೕ| whereீߚ| = 0. Note that ܨுభ =1079 0.09% when rare SNPs are included. 1080 
 1081 
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Finally, we sampled the outcome based on the outcome score (for the ݅th individual) 1082 ܱ = ∑ଶୀଵ ܥߚ + ସୀଵ∑)ߛ ܩೕீߚ + (ଵܪுభߚ + ݁ +  1083 ,ݓ
where ߛ is the effect scale of SNPs and haplotype "11XX", ݁~ܰ(0,0.1) is the random error and ݓ is 1084 
a fixed intercept term. For linear models, the outcome ܻ = ܱ; while for generalized linear models, 1085 

we sampled the outcome from binomial distribution: ܻ~݊݅ܤ(ߨ,1), where ߨ = ೀଵାೀ is the 1086 
probability that the ݅ th individual has the case. 1087 
 1088 
As the simulation is intended to compare the variance explained by HTRX, HTR and SNPs (GWAS) 1089 
in addition to fixed covariates, we tripled the effect sizes of SNPs and haplotype "11XX" (if 1090 
interaction exists) by setting ߛ = 3. In "glm", to ensure a reasonable case prevalence (e.g. below 5%), 1091 
we set ݓ = −7, which was also applied in "lm". 1092 
 1093 
We applied the procedure described in “ HTRX Model selection procedure for shorter haplotypes” 1094 
for HTRX, HTR and GWAS, and visualized the distribution of the out-of-sample ܴଶ for each of the 1095 
best models selected by each method in Supplementary Figure 4.4. In both "lm" and "glm", HTRX 1096 
has equal predictive performance as the true model. It performs as well as GWAS when the 1097 
interaction effects is absent, explains more variance when an interaction is present, and is significantly 1098 
more explanatory than HTR. When rare SNPs are included, the only effective interaction term is rare. 1099 
In this case the difference between GWAS and HTRX becomes smaller as expected, and removing the 1100 
rare haplotypes hardly reduces the performance of HTRX. 1101 
 1102 
In conclusion, we demonstrate through simulation that our HTRX implementation a) searches 1103 
haplotype space effectively, and b) protects against overfitting. This makes it a superior approach 1104 
compared to HTR and GWAS to integration SNP effects with gene-gene interaction. Its robustness 1105 
also retains when there are rare effective SNPs and haplotypes. 1106 
 1107 
POLYGENIC SELECTION TEST 1108 
We inferred allele frequency trajectories and selection coefficients for a set of LD-puned genome-1109 
wide significant trait associated variants using a modified version of the software CLUES19. To 1110 
account for population structure in our samples, we applied a novel chromosome painting technique 1111 
based on inference of a sample’s nearest neighbours in the marginal trees of an ARG that contains 1112 
labelled individuals (Irving-Pease et al., submitted). We ran CLUES using a time-series of imputed 1113 
aDNA genotype probabilities obtained from 1,015 ancient West Eurasian samples that passed all 1114 
quality control filters. We produced four additional models for each trait associated variant, by 1115 
conditioning the analysis on one of the four ancestral path labels from our chromosome painting 1116 
model: either Western hunter-gatherers (WHG), Eastern hunter-gatherers (EHG), Caucasus hunter-1117 
gatherers (CHG), or Anatolian farmers (ANA). We then inferred polygenic selection gradients (ω) 1118 
and p-values for each of MS, CD and RA, in all ancestral paths, using the software PALM20. Full 1119 
methods and results can be found in Supplementary Note 6. 1120 
 1121 
ANCESTRY LINKAGE DISEQUILIBRIUM (LDA) AND ANCESTRY LINKAGE 1122 
DISEQUILIBRIUM SCORE (LDAS) 1123 
In population genetics, linkage disequilibrium (LD) is defined as the non-random association of 1124 
alleles at different loci in a given population80. We propose an ancestry linkage disequilibrium (LDA) 1125 
approach to measure the association of ancestries between SNPs. 1126 
 1127 
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Let ܣ(݅, ݆, ݇) denote the probability of the ݇th ancestry (݇ = 1, . . . ݆) at the ݆th SNP (ܭ, = 1, . . . ,  of a 1128 (ܬ
chromosome for the ݅th individual (݅ = 1, . . . ,ܰ). 1129 
 1130 
We define the distance between SNP ݈ and ݉ as the average ܮଶ norm between ancestries at those 1131 
SNPs. Specifically we compute the ܮଶ norm for the ݅th genome as 1132 ܦ(݈,݉) = ,݅)ܣ|| ݈,⋅) − ଶ||(⋅,݉,݅)ܣ = ටଵ ∑ୀଵ ,݅)ܣ) ݈, ݇) − ,݉,݅)ܣ ݇))ଶ. 1133 

 1134 
Then we compute the distance between SNP ݈ and ݉ by averaging ܦ(݈,݉): 1135 ܦ(݈,݉) = ଵே ∑ேୀଵ  (݈,݉). 1136ܦ
 1137 
We define ܦ∗(݈,݉) as the theoretical distance between SNP ݈ and ݉ if there were no linkage 1138 
disequilibrium of ancestry (LDA) between them. ܦ∗(݈,݉) is estimated by 1139 ܦ∗(݈,݉) ൎ ଵே∑ேୀଵ ,∗݅)ܣ|| ݈,⋅) −  ଶ, 1140||(⋅,݉,݅)ܣ
where ݅∗ ∈ {1, . . . ,ܰ} are re-sampled without replacement at SNP ݈. Using the empirical distribution 1141 
of ancestry probabilities accounts for variability in both the average ancestry and its distribution 1142 
across SNPs. Ancestry assignment can be very precise in regions of the genome where our reference 1143 
panel matches our data, and uncertain in others where we only have distant relatives of the underlying 1144 
populations. 1145 
 1146 
The LDA between SNP ݈ and ݉ is a similarity, defined in terms of the negative distance −1147 (݉,݈)ܦ 
normalized by the expected value ܦ∗(݈,݉) under no LD, as: 1148 ܣܦܮ(݈,݉) = ∗(,)ି(,)∗(,) . 1149 

 1150 
LDA therefore takes an expected value 0 when haplotypes are randomly assigned at different SNPs, 1151 
and positive values when the ancestries of haplotypes are correlated. 1152 
 1153 
LDA is a pairwise quantity. To arrive at a per-SNP property, we define the LDA score (LDAS) of 1154 
SNP ݆ as the total LDA of this SNP with the rest of the genome, i.e. the integral of the LDA for that 1155 
SNP. Because this quantity decreases to zero as we move away from the target SNP, this is in practice 1156 
computed within an ܺcM-window (we use ܺ = 5 as LDA is approximately zero outside this region in 1157 
our data) on both sides of the SNP. Note that we measure this quantity in terms of the genetic 1158 
distance, and therefore LDAS is measuring the length of ancestry-specific haplotypes compared to 1159 
individual-level recombination rates. 1160 
 1161 
As a technical note, when the SNPs approach either end of the chromosome, they no longer have a 1162 
complete window, which results in a smaller LDAS. This would be appropriate for measuring total 1163 
ancestry correlations, but to make LDAS useful for detecting anomalous SNPs, we use the LDAS of 1164 
the symmetric side of the SNP to estimate the LDAS within the non-existent window. 1165 
 1166 

 1167 
 1168 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2022. ; https://doi.org/10.1101/2022.09.23.509097doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.23.509097
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

where ݃݀(݈) is the genetic distance (i.e. position in cM) of SNP ݈, and ݃ݐ is the total genetic distance 1169 
of a chromosome. We also assume the LDA on either end of the chromosome equals the LDA of the 1170 
SNP closest to the end: ܣܦܮ(݆,݃݀ = 0) = ,݆)ܣܦܮ ݈(ௗ)) and ܣܦܮ(݆,݃݀ = (݀ݐ ,݆)ܣܦܮ 1171= ݈௫(ௗ)) , where ݃݀ is the genetic distance, ݈(ௗ) and ݈௫(ௗ) are the indexes of the SNP 1172 
with the smallest and largest genetic distance, respectively. 1173 
 1174 
The integral ௗ()ାௗ()ି ,݆)ܣܦܮ ݈)݀݃݀ is computed assuming linear interpolation of the LDA score 1175 

between adjacent SNPs. 1176 
 1177 
LDA thus quantifies the correlations between the ancestry of two SNPs, measuring the proportion of 1178 
individuals who have experienced a recombination leading to a change in ancestry, relative to the 1179 
genome-wide baseline. The LDA score is the total amount of genome in LDA with each SNP 1180 
(measured in recombination map distance). 1181 
 1182 
SIMULATION FOR SELECTION: LDA 1183 
An ancient population ܲ evolved for 2200 generations before splitting into two sub-populations ଵܲ 1184 
(Steppe) and ଶܲ (Farmer). After evolving 400 generations, we added mutation “݉ଵ” and “݉ଶ”  at the 1185 
different locus in ଵܲ and ଶܲ. Both added mutations were then positively selected in the following 300 1186 
generations, after which they merged to ଷܲ, where both added mutations experienced strong positive 1187 
selection for 20 generations. Finally, we sampled 1000 individuals from ଷܲ to compute their ancestry 1188 
proportions of ଵܲ and ଶܲ using the "chromosome painting" technique, and calculated the LDA score 1189 
of the simulated chromosome positions. 1190 
 1191 
The above describes the simulation in Supplementary Figure 6.1. 1192 
 1193 
We investigated balancing selection at 2 loci as well. The balancing selection in ଵܲ and ଶܲ ensured the 1194 
mutated allele reaches around 50% frequency, while positive selection made the mutated allele 1195 
become almost the only allele. In ଷܲ, if ݉ଵ or ݉ଶ was positively selected, its frequency reached more 1196 
than 80% regardless of whether the allele experienced balancing or positive selection in ଵܲ or ଶܲ, 1197 
because we set a strong positive selection. If ݉ଵ or ݉ଶ was balancing selected in ଷܲ, its frequency 1198 
slightly increased, e.g. if ݉ଵ underwent balancing selection in ଵܲ, it had 25% frequency when ଷܲ was 1199 
created, and the frequency reached around 37.5% after 20 generations of balancing selection in ଷܲ. 1200 
 1201 
The results (Supplementary Figure 6.2) show that positive selection in ଷܲ resulted in low LDA scores 1202 
around the selected locus, if this allele was not uncommon (i.e. had 50% (balancing selection) or 1203 
100% frequency (positive selection) in subpopulation ଵܲ or ଶܲ). Note that the balancing selection in 1204 ଵܲ or ଶܲ worked the same as “weak positive selection”, because ݉ଵ and ݉ଶ were rare when they first 1205 
occurred, which were positively selected until 50% frequency. 1206 
 1207 
We also performed simulations for selection at a single locus (Supplementary Figure 6.2&6.3).  1208 
 1209 
Stage 1: We added a mutation ݉ଵ in the 1600 generation in ܲ, which then underwent balancing 1210 
selection until generation 2200, when ܲ split into ଵܲ and ଶܲ, where the frequency of ݉ଵ was around 1211 
50%.  1212 
 1213 
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Stage 2: Then we explored different combinations of positive, balancing and negative selection of ݉ଵ 1214 
in ଵܲ and ଶܲ. the frequency of ݉ଵ reached 80%, 50% and 20% when it was positively, balancing or 1215 
negatively selected, respectively, until generation 2899. Here we sampled 20 individuals each in ଵܲ 1216 
and ଶܲ as the ancient samples. 1217 
 1218 
Stage 3: Then  ଵܲ and ଶܲ merged into ଷܲ in generation 2900. In ଷܲ, for each combination of selection 1219 
in Stage 2, we simulated positive, balancing and negative selection for ݉ଵ. The selection lasted for 20 1220 
generations, and then we sampled 4000 individuals from ଷܲ as the modern population. 1221 
 1222 
Results: when ݉ଵ was positively selected in only one of ଵܲ and ଶܲ, and it experienced negative 1223 
selection in ଷܲ, the LDA scores around the locus of ݉ଵ were low. Otherwise, no abnormal LDA 1224 
scores were found at ݉ଵ. 1225 
 1226 
 1227 
  1228 
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